
The CodeVideo Framework: Event Sourcing for
IDE State Representation in Educational

Software

Full Stack Craft LLC

January 18, 2025

Contents

1 Introduction 3

2 CodeVideo Framework Architecture and Abstraction Lay-
ers 3
2.1 Course . 3
2.2 Lesson . 3
2.3 Action . 4

3 Actions in Detail 4
3.1 Action Composition . 5
3.2 Action Granularity . 5
3.3 Abstracted Actions . 6

4 Snapshots: Capturing the Full IDE State 6
4.1 Reconstitution of IDE State 7
4.2 Parallel Video Generation 7

5 Validators: Deterministic Quality Assurance 7

6 Renderers: Virtual Editors and CodeVideo Studio 7

7 Recorders: Capturing Actions for Consumption in the
CodeVideo Framework 8
7.1 Mouse Recorder . 8
7.2 Keyboard Recorder . 8
7.3 Video Recorder . 8

8 Drivers: Playback Mechanisms for Automated Video Gen-

1

eration 8
8.1 Temporal Abstract Syntax Tree Management 9

8.1.1 Formal Definition 9
8.1.2 Implementation Strategy 10

9 Overview of Framework Progress 10

10 Applications For Extremely High Quality Dataset Gen-
eration For Use in Large Language Models 11

11 Conclusion 11

A Appendix A - Theoretical Performance of Parallel Video
Generation 11
A.1 Hardware Architecture and Capabilities 11
A.2 System Architecture . 12
A.3 Performance Metrics . 12
A.4 Scaling Characteristics . 13

B Appendix B - Example JSON of a Simple Console Log-
ging Lesson for Javascript 13

C Appendix B - List of All Possible Actions within the
CodeVideo Framework 15

2

1 Introduction
The rapid growth of online education has transformed the software learn-
ing experience, creating unprecedented demand for high-quality, interac-
tive software courses. As instructional video content rises, so do the
demands for editing, structuring, and delivering this content at scale—a
process that is both resource-intensive and technically challenging.

In this document, we present CodeVideo, an event-sourcing-based frame-
work designed to streamline the creation and management of software
instructional videos. By simulating every interaction (keystrokes and or
mouse interactions) in an Integrated Development Environment (IDE),
the framework can produce deterministic, repeatable sequences that sim-
ulate a live coding session. The result is not only the ability to generate
a static snapshot of the IDE state at any given time but also the capa-
bility to generate entire instructional videos programmatically, ensuring
consistency and precision across sessions.

2 CodeVideo Framework Architecture and Ab-
straction Layers

The CodeVideo Framework represents a modular and highly abstracted
approach to IDE-based video course creation. This section provides an
in-depth look at its primary abstractions and the structured hierarchy
that enables reproducible, fine-grained state control over IDE interac-
tions. The three main components are Courses, Lessons, and Actions.

2.1 Course
At the topmost level of the CodeVideo framework, we define a course, C,
represented by:

• A unique identifier, Cid

• A descriptive name, Cname

• A sequence of instructional units or lessons, L = {L1, L2, . . . , Ln}

2.2 Lesson
Each lesson, L, is composed of:

• An initial state snapshot of the project workspace, Sinitial

• A sequence of discrete actions A = {a1, a2, . . . , am}

3

• A final state snapshot Sfinal that serves as the baseline for subse-
quent lessons

2.3 Action
Central to the framework is the concept of an action, the smallest unit
of interaction within the IDE. Actions, represented as ai, encode the
following elements:

ai : action_type → action_value

Examples of action types include text entry commands, cursor move-
ments, file modifications, and verbal narration cues. For instance:

• Text Entry Action:

atype = “enter-text”
avalue = “console.log(’Hello, world!’);”

• Narration Action:

atype = “speak-before”
avalue = “I’m going to log a message to the console.”

3 Actions in Detail
Actions form the foundation of the entire foundation of the CodeVideo
framework. From an abstract standpoint, an action should be able to
handle any basic interaction that is possible with a computer. There are
limited ways of interacting with a computer, in order of most common
to least common:

• Keyboard: A keyboard has a large variety of keys, but they can be
broken down into 3 categories: letters, numbers, and symbols.

• Mouse: a mouse has motion sensor, 3 buttons, and a scroll wheel.

• Trackpad: which have 1 button and a touch surface.

• Audio inputs (microphones), which represent a series of points at
varying amplitudes.

• Video inputs (cameras), which represent a series of images.

4

These methods comprise all the possible inputs to a computer.

We abstract these inputs to three main categories of actions: keyboard,
mouse, and multimedia (audio and video).

Within an IDE, there are then 3 target locations where these actions can
be applied: the editor, the file tree, and the terminal.

To distinguish the location of each action, the action name is suffixed with
the target location. For example, a keystroke in the editor is represented
as type − editor, a left click in the file tree is left − click − file − tree,
and speaking about something in the terminal is speak − terminal.

Appendix A provides a sample of a series of actions, representing a Con-
sole Logging Lesson for JavaScript.

Appendix B provides all possible action names within the CodeVideo
framework.

3.1 Action Composition
Actions are strictly composed of two parts: the action type and the action
value. The action type is a string that describes the action, and the action
value is a string that represents the value of the action. For example, an
editor typing action would have the action type of ”type-editor” and the
action value of ”console.log(’Hello, world!’);”.

3.2 Action Granularity
The framework implements a hierarchical action granularity system, where
the base unit of interaction can be configured according to course require-
ments:

• Atomic Actions (Default): The finest level of granularity, cap-
turing:

– Individual keystrokes: akey = {key : ‘a′, step : n}

– Single cursor movements: acursor = {position : (x, y), step :
n}

– Mouse events: amouse = {type :′ click′, position : (x, y), step :
n}

• Composed Actions: Higher-level abstractions that can be con-
figured:

– Line-level changes: aline = {content : string, lineNumber :
n}

5

– Block-level modifications: ablock = {content : string, range :
(start, end)}

– Semantic operations: asemantic = {type : ‘function−declaration′, content :
string}

The granularity level can be adjusted dynamically, with the framework
maintaining the atomic actions internally while presenting a more ab-
stract interface when desired:

Acomposed = f(a1, a2, ..., an) where ai are atomic actions

3.3 Abstracted Actions
The notion of an ”Abstracted Action” is a highly composed action that
represents, and can be broken down, into atomic actions. While the
action name becomes simpler, the action value becomes more complex.
For example, the ”mouse” action is an abstracted action for an entire
mouse movement, including the mouse’s x and y coordinates, timestamp,
what buttons were clicked, and so on.

4 Snapshots: Capturing the Full IDE State
Snapshots represent the entire state of the IDE at a given point, allowing
for precise rollback and reproducibility:

S = ⟨metadata,
file_structure,
selected_file,
open_files,
editor_content,
caret_position,
terminal_content⟩

Where:

• Metadata contains high-level course information.

• File Structure denotes the directory tree visible in the IDE.

• Selected File and Open Files track active files.

• Editor Content and Caret Position record the current text and
cursor position.

• Terminal Content displays command-line output.

6

4.1 Reconstitution of IDE State
In a software lesson, the authors, keyboard, and mouse components can
all be used in parallel while creating lesson, much like how a real software
developer would interact with an IDE. The IDE then, is the more or less
linear result of these interactions. The IDE state can be reconstituted
by replaying the actions in the same order they were recorded. We use
logical time to represent the start of any one of these ”parallel” actions,
and let the renderers handle the overlapping complexity.

4.2 Parallel Video Generation
With a 100% reconstituable IDE state, the framework can generate mul-
tiple videos in parallel and stitch them together flawless at the end. For
example, consider a 200 step lesson. After validating that the state is con-
tinuous between each step, the framework can generate 200 short videos
in parallel, each video representing a step in the lesson. The videos can
then be stitched together to create a single video that represents the en-
tire lesson. Because the IDE state is guaranteed by the framework to be
continuous between each step, the final video will be a seamless represen-
tation of the entire lesson. See Appendix A for a theoretical performance
analysis of parallel video generation.

5 Validators: Deterministic Quality Assurance
Each lesson’s continuity is verified through a snapshot validator, to con-
firm that the content of the given project at the end of one lesson matches
the initial state of the next lesson:

∀i ∈ [1, n− 1], Sfinal(Li) = Sinitial(Li+1)

If any two consecutive snapshots do not match, the validator throws an
error, ensuring seamless progression across lessons.

6 Renderers: Virtual Editors and CodeVideo
Studio

The CodeVideo framework integrates a virtual editor, which emulates
IDE interactions in a standalone environment:

• The virtual editor provides snapshots on demand via getProjectSnapshot(),
allowing course authors to generate real-time previews of each state.

7

The rendering engine, CodeVideo Studio (https://studio.codevideo.io),
provides a visual representation within the IDE, enabling authors to edit
actions dynamically and validate course accuracy.

7 Recorders: Capturing Actions for Consump-
tion in the CodeVideo Framework

The framework supports a range of recorders.

7.1 Mouse Recorder
CodeVideo offers ‘codevideo-mouse’ library as a rich TypeScript React
component that captures mouse interactions within the IDE.

7.2 Keyboard Recorder
The first record directly records mouse, keystrokes, and microphone au-
dio:

• Keystrokes and cursor movements are recorded in the main editor.

• Interactions within the file tree, terminal, and narration windows
are recorded and transformed to action format to build the repeat-
able and full IDE state representation.

7.3 Video Recorder
The second is visual-based, capturing the entire screen and using com-
puter vision to detect and interpret user interactions:

• The visual recorder captures the entire screen, including the IDE
and any additional windows.

• The video is broken into individual frames, and computer vision
algorithms detect and interpret user interactions.

• The detected interactions are transformed into actions and used to
build the repeatable and full IDE state representation.

8 Drivers: Playback Mechanisms for Automated
Video Generation

CodeVideo provides multiple playback mechanisms for automated video
generation:

8

• CodeVideo Studio our main editor, based on a Monaco editor
along side an action editor. Includes time travel and snapshot
validation.

• Monaco Editor Driver for localhost single editor-based video
generation (beta)

• VSCode Driver for localhost complete IDE editor-based video
generation (beta)

8.1 Temporal Abstract Syntax Tree Management
Central to the framework’s refactoring capabilities is the concept of a
Temporal Abstract Syntax Tree (TAST), which extends traditional AST
manipulation to include logical time as a dimension. Simply described,
this is the abstract syntax tree after every moment (action) in time. The
concept of TASTs are not new, and have been explored in various works
[moore2022temporal].

8.1.1 Formal Definition

A Temporal AST node at logical step n is defined as:

TASTnode(n) = ⟨ID, Type, V alue(n), Children(n),Metadata(n)⟩

Where:

• ID is a unique identifier persisting across the action sequence

• Type represents the node type (e.g., Identifier, FunctionDeclara-
tion)

• V alue(n) is the node’s value at step n

• Children(n) represents child nodes at step n

• Metadata(n) stores additional information like scope and refer-
ences

When performing retrospective modifications (e.g., variable renaming),
the framework uses a forward propagation algorithm:

∀m > n : TAST (m) = Apply(TAST (m− 1),Modification(n))

The modification propagation follows these principles:

9

1. Identity Preservation: Node identities remain constant across
the sequence, enabling tracking of elements despite name changes:

ID(TASTnode(n)) = ID(TASTnode(m)) ∀n,m

2. Reference Integrity: All references to modified nodes are up-
dated while maintaining semantic correctness:

Refs(TASTnode(m)) = UpdateRefs(Refs(TASTnode(n)),Modification(n))

3. Scope Resolution: Modifications respect lexical scoping rules
across the logical sequence:

Scope(TASTnode(m)) = ResolveScope(Scope(TASTnode(n)), Environment(m))

8.1.2 Implementation Strategy

The framework implements temporal AST modifications through a com-
bination of:

• Forward replay with modification injection

• Lazy evaluation of affected subtrees

• Cached intermediate states for performance optimization

This approach enables complex refactoring operations while maintain-
ing the integrity of the recorded action sequence. For example, when
renaming a variable at step n, the system:

1. Captures the modification intent: M = {type : ”rename”, target :
ID, newV alue : name}

2. Identifies all subsequent steps containing references to the target:
Stepsaffected = {m|m ≥ n ∧HasRef(TAST (m), ID)}

3. Applies the modification across all affected steps while preserving
other concurrent modifications

9 Overview of Framework Progress
The environments and actions to make codevideos form an interesting
matrix of thte software libraries and progress of the entire framework
as a whole. The following table reflect the current state of the frame-
work, when looking at the various environments and their Renderers,
Recorders, and Drivers, as well as what language the package is written
in.

10

Environment Renderers Recorders Drivers Languages Status
Web CodeVideo Studio Keyboard CodeVideo Studio TypeScript Beta
Visual Studio Code Visual Studio Code’s GUI ‘codevideo-vs-code-extension’ ‘codevideo-vs-code-extension’ TypeScript Alpha

Note within these, the underlying event source architecture of the snap-
shot generators via the virtual items is the same, and the drivers are the
only thing that changes.

10 Applications For Extremely High Quality Dataset
Generation For Use in Large Language Mod-
els

A large component of context missing from large language models and
transformers is this exact travel-through-time context. By including the
full correct and complete steps to creating software, either through the
array of actions or a TAST to LLM training data, we can provide a more
comprehensive dataset for coding training data.

11 Conclusion
The CodeVideo framework offers a robust, reproducible method for gen-
erating IDE-based educational content, reducing manual editing and in-
creasing course consistency. With its event-sourcing architecture, the
framework not only captures precise IDE states but also provides a plat-
form for creating interactive, context-rich programming tutorials.

A Appendix A - Theoretical Performance of Par-
allel Video Generation

The CodeVideo framework leverages modern hardware architecture to
achieve exceptional performance through massive parallelization. This
section analyzes performance metrics based on the Apple Silicon M4
architecture with 128GB unified memory.

A.1 Hardware Architecture and Capabilities
The framework’s performance is optimized for modern unified memory
architectures, particularly benefiting from:

• Unified Memory: 128GB shared between CPU and GPU elimi-
nates memory transfer overhead

11

• Memory Bandwidth: 546GB/second enables rapid frame buffer
processing

• Hardware Video Encoders: Native hardware acceleration for
concurrent video streams

• Parallel Chrome Instances: Support for 80-100 concurrent head-
less browsers

A.2 System Architecture
The framework employs a multi-tiered execution model:

• Orchestration Layer: Written in Rust/Go for optimal system
resource management

• Rendering Engine: Headless Chrome instances managed via
Puppeteer

• Video Processing: Hardware-accelerated encoding via VideoTool-
box

• Storage Layer: NVMe SSD array for parallel I/O operations

A.3 Performance Metrics
Table 2 compares CodeVideo generation times with traditional video
editing workflows across various lesson sizes. These estimates assume:

• Average step duration of 4 seconds

• 90 parallel Chrome instances (optimized for M4 architecture)

• Hardware-accelerated video encoding

• Traditional editing requiring 2.5x video length plus setup time per
step

Number of Steps Total Video
Length

CodeVideo
Generation

Traditional
Editing
Time

Performance
Improve-
ment

(minutes) (seconds) (hours) (factor)
50 3.3 17 0.56 5,324x
100 6.7 34 1.11 5,324x
200 13.3 51 2.22 7,098x
500 33.3 102 5.56 8,873x

Table 2: Performance comparison between CodeVideo and
traditional video editing workflows on M4 architecture

12

A.4 Scaling Characteristics
The framework exhibits near-linear scaling up to the parallel instance
limit, with performance primarily bounded by:

• I/O Operations: NVMe bandwidth for intermediate file handling

• Memory Management: Dynamic allocation across Chrome in-
stances

• Video Encoding: Hardware encoder queue depth

As demonstrated by the performance metrics, the CodeVideo framework
achieves approximately a 200x improvement in production time com-
pared to traditional video editing workflows when leveraging modern
unified memory architecture. This extraordinary efficiency gain is par-
ticularly pronounced for larger lessons, making it feasible to generate
entire courses of content in minutes rather than hours or days.

The parallel processing capabilities of the M4 architecture, combined
with hardware-accelerated video encoding and the unified memory model,
enable the framework to process approximately 90 steps simultaneously.
This results in the remarkably fast generation times shown above, with
even 500-step lessons completing in under 2 minutes.

B Appendix B - Example JSON of a Simple
Console Logging Lesson for Javascript

[
{

"name": "speak-before",
"value": "Today, we're going to learn about how to

use the console.log function in JavaScript."↪→

},
{

"name": "speak-before",
"value": "I've already got a hello-world.js file

prepared here - let's open it up."↪→

},
{

"name": "click-filename",
"value": "hello-world.js"

},
{

"name": "click-editor",

13

"value": "1"
},
{

"name": "speak-before",
"value": "Now, to log things to your console,

simply make a call to the console.log function,
passing in the text you want to log."

↪→

↪→

},
{

"name": "type-editor",
"value": "console.log('Hello, world!');"

},
{

"name": "save",
"value": "1"

},
{

"name": "speak-before",
"value": "Now we'll open up a terminal and run this

file."↪→

},
{

"name": "open-terminal",
"value": "1"

},
{

"name": "click-terminal",
"value": "1"

},
{

"name": "type-terminal",
"value": "node hello-world.js"

},
{

"name": "enter",
"value": "1"

},
{

"name": "wait",
"value": "2000"

},
{

"name": "speak-before",

14

"value": "And of course we get the expected output
- 'hello world!' printed to the console."↪→

},
{

"name": "speak-before",
"value": "And that's about it! You now know how to

log things to your console in JavaScript!"↪→

}
]

C Appendix B - List of All Possible Actions
within the CodeVideo Framework

Key Combination Context Code
editor Bindings

‘ editor Backquote-editor
Shift+{̃} editor Shift+Backquote-editor
1 editor Digit1-editor
Shift+! editor Shift+Digit1-editor
2 editor Digit2-editor
Shift+@ editor Shift+Digit2-editor
3 editor Digit3-editor
Shift+# editor Shift+Digit3-editor
4 editor Digit4-editor
Shift+$ editor Shift+Digit4-editor
5 editor Digit5-editor
Shift+% editor Shift+Digit5-editor
6 editor Digit6-editor
Shift+{̂} editor Shift+Digit6-editor
7 editor Digit7-editor
Shift+& editor Shift+Digit7-editor
8 editor Digit8-editor
Shift+* editor Shift+Digit8-editor
9 editor Digit9-editor
Shift+(editor Shift+Digit9-editor
0 editor Digit0-editor
Shift+) editor Shift+Digit0-editor
- editor Minus-editor
Shift+_ editor Shift+Minus-editor
= editor Equal-editor
Shift++ editor Shift+Equal-editor

15

Key Combination Context Code
q editor KeyQ-editor
Shift+Q editor Shift+KeyQ-editor
w editor KeyW-editor
Shift+W editor Shift+KeyW-editor
e editor KeyE-editor
Shift+E editor Shift+KeyE-editor
r editor KeyR-editor
Shift+R editor Shift+KeyR-editor
t editor KeyT-editor
Shift+T editor Shift+KeyT-editor
y editor KeyY-editor
Shift+Y editor Shift+KeyY-editor
u editor KeyU-editor
Shift+U editor Shift+KeyU-editor
i editor KeyI-editor
Shift+I editor Shift+KeyI-editor
o editor KeyO-editor
Shift+O editor Shift+KeyO-editor
p editor KeyP-editor
Shift+P editor Shift+KeyP-editor
[editor BracketLeft-editor
Shift+{ editor Shift+BracketLeft-editor
] editor BracketRight-editor
Shift+} editor Shift+BracketRight-editor
\{} editor Backslash-editor
Shift+| editor Shift+Backslash-editor
a editor KeyA-editor
Shift+A editor Shift+KeyA-editor
s editor KeyS-editor
Shift+S editor Shift+KeyS-editor
d editor KeyD-editor
Shift+D editor Shift+KeyD-editor
f editor KeyF-editor
Shift+F editor Shift+KeyF-editor
g editor KeyG-editor
Shift+G editor Shift+KeyG-editor
h editor KeyH-editor
Shift+H editor Shift+KeyH-editor
j editor KeyJ-editor
Shift+J editor Shift+KeyJ-editor
k editor KeyK-editor

16

Key Combination Context Code
Shift+K editor Shift+KeyK-editor
l editor KeyL-editor
Shift+L editor Shift+KeyL-editor
; editor Semicolon-editor
Shift+: editor Shift+Semicolon-editor
’ editor Quote-editor
Shift+” editor Shift+Quote-editor
z editor KeyZ-editor
Shift+Z editor Shift+KeyZ-editor
x editor KeyX-editor
Shift+X editor Shift+KeyX-editor
c editor KeyC-editor
Shift+C editor Shift+KeyC-editor
v editor KeyV-editor
Shift+V editor Shift+KeyV-editor
b editor KeyB-editor
Shift+B editor Shift+KeyB-editor
n editor KeyN-editor
Shift+N editor Shift+KeyN-editor
m editor KeyM-editor
Shift+M editor Shift+KeyM-editor
, editor Comma-editor
Shift+< editor Shift+Comma-editor
. editor Period-editor
Shift+> editor Shift+Period-editor
/ editor Slash-editor
Shift+? editor Shift+Slash-editor

editor Space-editor

terminal Bindings
‘ terminal Backquote-terminal
Shift+{̃} terminal Shift+Backquote-terminal
1 terminal Digit1-terminal
Shift+! terminal Shift+Digit1-terminal
2 terminal Digit2-terminal
Shift+@ terminal Shift+Digit2-terminal
3 terminal Digit3-terminal
Shift+# terminal Shift+Digit3-terminal
4 terminal Digit4-terminal
Shift+$ terminal Shift+Digit4-terminal
5 terminal Digit5-terminal

17

Key Combination Context Code
Shift+% terminal Shift+Digit5-terminal
6 terminal Digit6-terminal
Shift+{̂} terminal Shift+Digit6-terminal
7 terminal Digit7-terminal
Shift+& terminal Shift+Digit7-terminal
8 terminal Digit8-terminal
Shift+* terminal Shift+Digit8-terminal
9 terminal Digit9-terminal
Shift+(terminal Shift+Digit9-terminal
0 terminal Digit0-terminal
Shift+) terminal Shift+Digit0-terminal
- terminal Minus-terminal
Shift+_ terminal Shift+Minus-terminal
= terminal Equal-terminal
Shift++ terminal Shift+Equal-terminal
q terminal KeyQ-terminal
Shift+Q terminal Shift+KeyQ-terminal
w terminal KeyW-terminal
Shift+W terminal Shift+KeyW-terminal
e terminal KeyE-terminal
Shift+E terminal Shift+KeyE-terminal
r terminal KeyR-terminal
Shift+R terminal Shift+KeyR-terminal
t terminal KeyT-terminal
Shift+T terminal Shift+KeyT-terminal
y terminal KeyY-terminal
Shift+Y terminal Shift+KeyY-terminal
u terminal KeyU-terminal
Shift+U terminal Shift+KeyU-terminal
i terminal KeyI-terminal
Shift+I terminal Shift+KeyI-terminal
o terminal KeyO-terminal
Shift+O terminal Shift+KeyO-terminal
p terminal KeyP-terminal
Shift+P terminal Shift+KeyP-terminal
[terminal BracketLeft-terminal
Shift+{ terminal Shift+BracketLeft-terminal
] terminal BracketRight-terminal
Shift+} terminal Shift+BracketRight-terminal
\{} terminal Backslash-terminal
Shift+| terminal Shift+Backslash-terminal

18

Key Combination Context Code
a terminal KeyA-terminal
Shift+A terminal Shift+KeyA-terminal
s terminal KeyS-terminal
Shift+S terminal Shift+KeyS-terminal
d terminal KeyD-terminal
Shift+D terminal Shift+KeyD-terminal
f terminal KeyF-terminal
Shift+F terminal Shift+KeyF-terminal
g terminal KeyG-terminal
Shift+G terminal Shift+KeyG-terminal
h terminal KeyH-terminal
Shift+H terminal Shift+KeyH-terminal
j terminal KeyJ-terminal
Shift+J terminal Shift+KeyJ-terminal
k terminal KeyK-terminal
Shift+K terminal Shift+KeyK-terminal
l terminal KeyL-terminal
Shift+L terminal Shift+KeyL-terminal
; terminal Semicolon-terminal
Shift+: terminal Shift+Semicolon-terminal
’ terminal Quote-terminal
Shift+” terminal Shift+Quote-terminal
z terminal KeyZ-terminal
Shift+Z terminal Shift+KeyZ-terminal
x terminal KeyX-terminal
Shift+X terminal Shift+KeyX-terminal
c terminal KeyC-terminal
Shift+C terminal Shift+KeyC-terminal
v terminal KeyV-terminal
Shift+V terminal Shift+KeyV-terminal
b terminal KeyB-terminal
Shift+B terminal Shift+KeyB-terminal
n terminal KeyN-terminal
Shift+N terminal Shift+KeyN-terminal
m terminal KeyM-terminal
Shift+M terminal Shift+KeyM-terminal
, terminal Comma-terminal
Shift+< terminal Shift+Comma-terminal
. terminal Period-terminal
Shift+> terminal Shift+Period-terminal
/ terminal Slash-terminal

19

Key Combination Context Code
Shift+? terminal Shift+Slash-terminal

terminal Space-terminal

file-tree Bindings
‘ file-tree Backquote-file-tree
Shift+{̃} file-tree Shift+Backquote-file-tree
1 file-tree Digit1-file-tree
Shift+! file-tree Shift+Digit1-file-tree
2 file-tree Digit2-file-tree
Shift+@ file-tree Shift+Digit2-file-tree
3 file-tree Digit3-file-tree
Shift+# file-tree Shift+Digit3-file-tree
4 file-tree Digit4-file-tree
Shift+$ file-tree Shift+Digit4-file-tree
5 file-tree Digit5-file-tree
Shift+% file-tree Shift+Digit5-file-tree
6 file-tree Digit6-file-tree
Shift+{̂} file-tree Shift+Digit6-file-tree
7 file-tree Digit7-file-tree
Shift+& file-tree Shift+Digit7-file-tree
8 file-tree Digit8-file-tree
Shift+* file-tree Shift+Digit8-file-tree
9 file-tree Digit9-file-tree
Shift+(file-tree Shift+Digit9-file-tree
0 file-tree Digit0-file-tree
Shift+) file-tree Shift+Digit0-file-tree
- file-tree Minus-file-tree
Shift+_ file-tree Shift+Minus-file-tree
= file-tree Equal-file-tree
Shift++ file-tree Shift+Equal-file-tree
q file-tree KeyQ-file-tree
Shift+Q file-tree Shift+KeyQ-file-tree
w file-tree KeyW-file-tree
Shift+W file-tree Shift+KeyW-file-tree
e file-tree KeyE-file-tree
Shift+E file-tree Shift+KeyE-file-tree
r file-tree KeyR-file-tree
Shift+R file-tree Shift+KeyR-file-tree
t file-tree KeyT-file-tree
Shift+T file-tree Shift+KeyT-file-tree
y file-tree KeyY-file-tree

20

Key Combination Context Code
Shift+Y file-tree Shift+KeyY-file-tree
u file-tree KeyU-file-tree
Shift+U file-tree Shift+KeyU-file-tree
i file-tree KeyI-file-tree
Shift+I file-tree Shift+KeyI-file-tree
o file-tree KeyO-file-tree
Shift+O file-tree Shift+KeyO-file-tree
p file-tree KeyP-file-tree
Shift+P file-tree Shift+KeyP-file-tree
[file-tree BracketLeft-file-tree
Shift+{ file-tree Shift+BracketLeft-file-tree
] file-tree BracketRight-file-tree
Shift+} file-tree Shift+BracketRight-file-tree
\{} file-tree Backslash-file-tree
Shift+| file-tree Shift+Backslash-file-tree
a file-tree KeyA-file-tree
Shift+A file-tree Shift+KeyA-file-tree
s file-tree KeyS-file-tree
Shift+S file-tree Shift+KeyS-file-tree
d file-tree KeyD-file-tree
Shift+D file-tree Shift+KeyD-file-tree
f file-tree KeyF-file-tree
Shift+F file-tree Shift+KeyF-file-tree
g file-tree KeyG-file-tree
Shift+G file-tree Shift+KeyG-file-tree
h file-tree KeyH-file-tree
Shift+H file-tree Shift+KeyH-file-tree
j file-tree KeyJ-file-tree
Shift+J file-tree Shift+KeyJ-file-tree
k file-tree KeyK-file-tree
Shift+K file-tree Shift+KeyK-file-tree
l file-tree KeyL-file-tree
Shift+L file-tree Shift+KeyL-file-tree
; file-tree Semicolon-file-tree
Shift+: file-tree Shift+Semicolon-file-tree
’ file-tree Quote-file-tree
Shift+” file-tree Shift+Quote-file-tree
z file-tree KeyZ-file-tree
Shift+Z file-tree Shift+KeyZ-file-tree
x file-tree KeyX-file-tree
Shift+X file-tree Shift+KeyX-file-tree

21

Key Combination Context Code
c file-tree KeyC-file-tree
Shift+C file-tree Shift+KeyC-file-tree
v file-tree KeyV-file-tree
Shift+V file-tree Shift+KeyV-file-tree
b file-tree KeyB-file-tree
Shift+B file-tree Shift+KeyB-file-tree
n file-tree KeyN-file-tree
Shift+N file-tree Shift+KeyN-file-tree
m file-tree KeyM-file-tree
Shift+M file-tree Shift+KeyM-file-tree
, file-tree Comma-file-tree
Shift+< file-tree Shift+Comma-file-tree
. file-tree Period-file-tree
Shift+> file-tree Shift+Period-file-tree
/ file-tree Slash-file-tree
Shift+? file-tree Shift+Slash-file-tree

file-tree Space-file-tree

22

